Polyunsaturated fatty acids are potent openers of human M-channels expressed in Xenopus laevis oocytes.

نویسندگان

  • S I Liin
  • U Karlsson
  • B H Bentzen
  • N Schmitt
  • F Elinder
چکیده

AIM Polyunsaturated fatty acids have been reported to reduce neuronal excitability, in part by promoting inactivation of voltage-gated sodium and calcium channels. Effects on neuronal potassium channels are less explored and experimental data ambiguous. The aim of this study was to investigate anti-excitable effects of polyunsaturated fatty acids on the neuronal M-channel, important for setting the resting membrane potential in hippocampal and dorsal root ganglion neurones. METHODS Effects of fatty acids and fatty acid analogues on mouse dorsal root ganglion neurones and on the human KV 7.2/3 channel expressed in Xenopus laevis oocytes were studied using electrophysiology. RESULTS Extracellular application of physiologically relevant concentrations of the polyunsaturated fatty acid docosahexaenoic acid hyperpolarized the resting membrane potential (-2.4 mV by 30 μm) and increased the threshold current to evoke action potentials in dorsal root ganglion neurones. The polyunsaturated fatty acids docosahexaenoic acid, α-linolenic acid and eicosapentaenoic acid facilitated opening of the human M-channel, comprised of the heteromeric human KV 7.2/3 channel expressed in Xenopus oocytes, by shifting the conductance-vs.-voltage curve towards more negative voltages (by -7.4 to -11.3 mV by 70 μm). Uncharged docosahexaenoic acid methyl ester and monounsaturated oleic acid did not facilitate opening of the human KV 7.2/3 channel. CONCLUSIONS These findings suggest that circulating polyunsaturated fatty acids, with a minimum requirement of multiple double bonds and a charged carboxyl group, dampen excitability by opening neuronal M-channels. Collectively, our data bring light to the molecular targets of polyunsaturated fatty acids and thus a possible mechanism by which polyunsaturated fatty acids reduce neuronal excitability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The S362A mutation block ROMK2 (Kir1.1b) endocytosis in Xenopus laevis oocyte membrane .

Abstract The S362A mutation block ROMK2 (Kir1.1b) endocytosis in Xenopus laevis oocyte membrane . Saeed Hajihashemi1 , 1-Assistant professor, PhD in Physiology, Department of Physiology, School of Medical science, Arak University of Medical Sciences. Introduction: ROMK channel is localized on the apical membrane of the nephron. Recent studies suggest that endocytosis of ROMK chan...

متن کامل

Metabolic Effects of Polyunsaturated Fatty Acids in Chickens: A Review

Chicken has been used as a suitable model for lipid metabolism studies, because dietary modifications especially dietary fat type can change chicken body composition. Fats act as a condense source of energy and certain fatty acids such as polyunsaturated fatty acids (PUFAs) are required for both animal and human health. The n-3 PUFAs, especially, eicosapentaenoic acid (EPA) and docosahexaenoic ...

متن کامل

Bile acids potentiate proton‐activated currents in Xenopus laevis oocytes expressing human acid‐sensing ion channel (ASIC1a)

Acid-sensing ion channels (ASICs) are nonvoltage-gated sodium channels transiently activated by extracellular protons and belong to the epithelial sodium channel (ENaC)/Degenerin (DEG) family of ion channels. Bile acids have been shown to activate two members of this family, the bile acid-sensitive ion channel (BASIC) and ENaC. To investigate whether bile acids also modulate ASIC function, huma...

متن کامل

Fatty Acid Composition of Human Follicular Fluid Phospholipids and Fertilization Rate in Assisted Reproductive Techniques

Background: Fatty acids are known to be critically important in multiple biological functions. Phospholipid fatty acids of follicular fluid, an important microenvironment for the development of oocytes, may contribute to the women’s fertility and the efficacy of assisted reproduction techniques. The aim of this study was to investigate the effect of fatty acid composition of follicular fluid ph...

متن کامل

Impact of maternal n-3 polyunsaturated fatty acid deficiency on dendritic arbor morphology and connectivity of developing Xenopus laevis central neurons in vivo.

Docosahexaenoic acid (DHA, 22:6n-3) is an essential component of the nervous system, and maternal n-3 polyunsaturated fatty acids (PUFAs) are an important source for brain development. Here, the impact of DHA on developing central neurons was examined using an accessible in vivo model. Xenopus laevis embryos from adult female frogs fed n-3 PUFA-adequate or deficient diets were analyzed every 10...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Acta physiologica

دوره 218 1  شماره 

صفحات  -

تاریخ انتشار 2016